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Abstract

Niching can allow a diverse population to cooperatively represent a single, dis-
tributed solution to the problem at hand. Successful niching mechanisms must
promote hoth cooperation (i.e., co-existence of separate “species” for each de-
sired niche), and competition (i.e., intensive search for the best species for each
niche, and for the best niches). In this paper we seek the competitive-cooperative
boundary in the space of possible niche relationships, that will allow us to suc-
cessfully predict which pairs of interacting niches will survive under GA selection
and which niche pairs will be resolved to yield a single winner. By combining ex-
tant models of niching equilibrium, niche maintenance, and convergence, we define
the regions of cooperation and competition on a map of niching scenarios varying
along the dimensions of niche overlap and relative niche fitness. We verify this
predictive map of niching failure/success, and discuss its utility in allowing us to

. control for the competitive evolution of desired types of cooperation. Although our
models are specific to the niching mechanism we call resource sharing, we believe
the development of competitive-cooperative control maps is important for niching
theory in general.
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1 INTRODUCTION AND BACKGROUND

In many types of genetic algorithm (GA) applications, discovering and exploiting different
“niches” in the problem environment is critical. Niching can allow a diverse population to
cooperatively represent a single, distributed solution to the problem at hand, or to present
us with a set of high-quality alternative solutions. Successful niching mechanisms must
promote both cooperation (i.e., co-existence of separate “species” for each desired niche),
and competition (i.e., intensive search for the best species for each niche, and for the best
niches).

In this paper we examine a very general, and successful, niching mechanism: the forced
sharing of finite resources (or “rewards”) from the problem domain. For resource sharing to
successfully mix cooperation and competition, the GA must be able to distinguish between
cooperative and competitive pairs of species or niches. At one extreme, species whose niches
have nothing in common are clearly cooperators (in a passive sense). At the other extreme,
species whose niches completely overlap are clearly competitors. Somewhere between these
two extremes, as niche overlap varies from zero to complete, lies the boundary between
cooperation and competition, under niched GA selection. In this paper we estimate the
shape and location of this boundary. For the first time we develop, and verify, a predictive
map of niching. With such a map in hand, we can identify the niched GA parameters that
will allow us to control for the types and levels of cooperation we want to evolve.

In the remainder of this section, we discuss niching in general before focusing on resource
sharing as the niching mechanism to be analyzed.

1.1 THE NEED FOR NICHING

In a GA, selection drives the evolving population toward a uniform distribution of N copies of
the most highly fit individual. Mutation and non-stationary fitness functions might stave off
100% convergence, but it is unarguable that the first-order effect of the first-order operator,
selection, is the loss of low quality diversity. In many applications of the GA, including
classifier systems, uniform convergence is undesirable. In multi-objective GA problems, for
example, we might want to find a number of solutions with different tradeoffs among the
multiple objectives (Horn & Nafpliotis, 1993). In the learning classifier system (LCS), we
ask the GA to search through the space of all possible rules to find and maintain a diverse,
cooperative subpopulation of rules that together represent a concept..

To prevent the best individual in the population from replacing all copies of competing
rivals, some kind of niching (a.k.a. speciation) is necessary. Niching induces restorative
pressure (Horn, 1993), to balance the convergence pressure of selection.

1.2~ OTHER NICHERS

We briefly mention alternative niching methods (several of these are covered in more de-
tail by Mahfoud (1995a; 1995b)), focusing more on sharing techniques for niching (and in
particular, resource sharing, the main target of our analysis in this paper).

A number of niching mechanisms have been proposed and used over the last couple of
decades. One of the earliest was Cavicchio’s preselection (Cavicchio, 1970; Mahfoud, 1992),
in which offspring could only replace one of their parents. De Jong’s crowding (De Jong,
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1975; Mahfoud, 1992) had the same flavor, in that new individuals replaced less-fit, but
similar, solutions in the old population. Boltzmann tournament selection has also been
shown to have niching effects (Goldberg, 1990; Mahfoud, 1993). Recently various kinds of
distributed population GAs, such as “island models”, have been used to find and maintain
multiple solutions by allocating different subpopulations to different parts of the search space
(Davidor, 1991). And explicit recognition and promotion of species is a general approach
instantiated in different ways, including species tags and various clustering mechanisms.

A very successful form of niching for GAs in pure optimization tasks is fitness sharing.
Introduced by Goldberg and Richardson (1987), studied in detail in (Deb, 1989; Horn, 1993;
Mahfoud, 1995a), and challenged by a massively multimodal problem in (Goldberg, Deb, &
Horn, 1992), fitness sharing works by degrading the objective (i.e., stand-alone) fitness of
an individual according the number of genotypically or phenotypically similar individuals
in the current population. The resulting shared fitness is then used in normal GA selection
and recombination. The closely related resource sharing induces niching implicitly (thus it
has been called implicit niching by Horn, Goldberg, and Deb (1994)).

Resource sharing is applied to tasks in which multiple, finite, explicit resources are known
and can be “attributed” or “credited” differentially to various individuals in the population.
If no such explicit resources are identifiable in the problem domain, objective fitness can be
considered a finite resource to be “shared”, resulting in the aforementioned fitness sharing.
Fitness and resource sharing are indeed so similar in their behavior that a unified model of
sharing for niching is possible (Horn, 1997).

1.3 RESOURCE SHARING

A natural niching effect is implicitly induced by competition for limited resources (i.e.,
finite rewards). The basic algorithm common to all resource sharing systems is simple and

intuitive:

1. For each of the finite resources r;, divide it up among all qualified individuals contending
for it, in proportion to their various merits (that is, the relative strengths of their
claims). Thus two equally deserving individuals should be allocated equal amounts of
the resource. If the resource is discrete, and cannot be evenly divided, then for each
indivisible unit of the resource, randomly choose among equally deserving individuals.
This random choice results in an ezpected uniform distribution of resources among
equally deserving candidates.

2. For each individual, add all rewards /credits earned in the first step, and use this amount
(perhaps scaled) as the fitness for GA selection.

3. After a new generation is produced, replenish/renew the resources and start over at the
first step above. Continue to loop until some stopping criterion is met.

The idea of splitting up a limited resource among all competing individuals seems evident
in nature and is simple to implement. Resource sharing is often incorporated in adaptive,
or simulated, systems, as we illustrate below.
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1.4 APPLICATIONS AND INSTANCES OF RESOURCE SHARING

This simple and natural scheme has been abstracted into a number of population-based
algorithms, including: learning classifier systems (LCS) (Booker, 1982; Wilson, 1987), im-
mune system models (Smith, Forrest, & Perelson, 1993), multi-agent systems, and ecological
simulations (Huberman, 1988). The resource sharing approach seems well-suited to several
major, open problem domains, such as classification, general covering problems, and layout
problems. Sharing attacks two major difficulties of population-based solutions to hard prob-
lems: credit assignment, and problem decomposition. Below we illustrate how sharing deals
with credit assignment and dynamic sub-tasking/decomposition by examining the learning
classifier system under “example sharing”.

1.5 THE CLASSIFIER SYSTEM AS AN EXAMPLE OF RESOURCE
SHARING

An example of resource sharing occurs in most implementations of the Michigan-style learn-
ing classifier system (Horn, Goldberg, & Deb, 1994). In an LCS, the population consists of
classification rules, or simply classifiers. These rules attempt to classify examples (either
from some training set or some test set). The rules are rewarded for correct classifications of
examples, earning credit for each correct classification of an example!. The sum of credits
earned, over all examples, is used for each rule’s fitness. This fitness is then used in normal
GA selection.

In the Michigan LCS, individuals (classification rules, or classifiers) compete for the rewards
(or credit) given for proper classification of a finite number of examples. Several researchers
have shown that simply dividing up an example’s reward/credit among all rules that suc-
cessfully classify that example (i.e., sharing), effectively and robustly maintains a diverse
set of rules that together “cover” the examples (e.g., Booker, 1982, 1989; Wilson, 1987,
1994). Thus LCS sharing is an instance of resource sharing in which the resources are the
rewards/credits for the examples. Henceforth, we will consider the examples themselves to
the resources to be shared, in order to simplify our discussion. Thus this strategy is often
known as ezample sharing (McCallum & Spackman, 1990; Neri & Saitta, 1995, 1996).

The sub-goal of resource sharing is to cover (exploit) as much of the resources as possible.
The only type of interaction between individuals is competition for the same resource, and
the natural mechanism for handling such competition (and encouraging search for uncovered
resources) is sharing of contested resources. Thus similar individuals (species) share common
resources by dividing them up among themselves. This simple method induces niching or
spectation, an emergent phenomenon.

The notions of competition and niche overlap are easy to visualize in the case of resource
sharing. In Figure 1, the large rectangle represents the space of all positive examples given
to the LCS for learning. The size of a circle represents the number of ezamples covered
by the corresponding rule, and hence the number of correct classifications it makes. The
overlaps of circles represent overlaps of coverage among rules, and thus contain the examples
“shared” by two or more rules?.

To illustrate the actual sharing of resources that leads to implicit niching: let f4 and fg be

! And perhaps earning penalties for incorrect classifications.
*That is, the examples correctly classified by both rules.
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fB: Area( B))

fA=Arca(A)

g = Area( A1 B)

Positive Examples

Figure 1: In the case of the learning classifier system (LCS), implicit niching is induced by rules
competing to classify examples. We can use area in the space of examples to indicate a rule’s
coverage, which is also its objective (i.e., unshared) fitness.

the objective fitnesses for rules A and B respectively. The objective fitness could be taken
as the number of examples covered® by that rule, in the case of binary classification. Let
fap be the amount of resources in the overlapping coverage of rules A and B. That is, f45
is the amount of resources shared by A and B (e.g., the number of examples covered by
both}. Let n4,np be the number of copies of rules A and B, respectively, in our population
of size N (thus N =ny4 +ng). Then we can calculate the shared (expected) fitness of rule
A:

fa— faB faB
- . 1
fsh,A A + na+ng ( )
Similarly for rule B,
fB— faB faB
= . 2
fon, ng + n4+ng @)

In the next section we show how to use these shared fitness expressions to calculate the
population distribution at “niching equilibrium”.

1.6 MOTIVATION

A genetic algorithm that incorporates selection, resource sharing, crossover, and mutation,
is searching for a group of individuals that together solve the problem at hand. In the
course of that search (i.e., evolution), various groups will emerge. Some groups will be very
“cooperative” in the sense that each member solves a different component {or subset of
components) of the problem. Other groups will be less cooperative, with some competition
among members to solve the same parts of the problem. Since this is a search problem, it
is not known at the beginning of the run what kinds of cooperative and competitive groups

3In other words, classified correctly.
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will be encountered. We must leave it up to selection and niching to decide which groups
of interacting individuals to save and exploit, and which to break up.

We can, however, set certain parameters, such as population size or the “degree of sharing”
of resources, to help selection and niching distinguish truly cooperative groups from the
overly competitive ones, whenever they are discovered. The competitive groups can be
dissolved, with the best of each group set free to join others in a more cooperative setting.
All of this takes place automatically under niched selection. We merely want to guide the
GA’s decision making between cooperation and competition.

As a first step toward controlling this boundary, we attempt in this paper to develop a
pre-cursor to a true control map: a predictive map of niching success and failure. We
first need to be able to reliably predict which groups are considered cooperative and which
competitive. Then we can try to control that boundary. To make this first step easier,
we consider only the minimal size group, that is, two possible individuals. Even with only
two possible species/niches, the difficult decision is preserved: as we increase the overlap
between the two niches, at what point does the GA switch from promoting the group (i.e.,
cooperation) to selecting a single winner (i.e., competition)?

2 A REVIEW OF KEY NICHING RESULTS

In this section we restate, re-derive, and in some cases recast, some of the recently pub-
lished results modeling niching under resource sharing. In particular, we revisit niching
equilibrium, including its definition, maintenance and loss, and fast convergence to it, under
selection. We base our later analysis on these fundamental results.

2.1 NICHING EQUILIBRIUM

For niched GAs that use any kind of sharing, resource or fitness, equilibrium (under selection
only) will occur when the shared fitnesses of all population members are equal (Goldberg &
Richardson, 1987; Deb, 1989). In the two niche case, the general equilibrium condition is:

fshoa = fsn,B. (3)

Substituting in the expressions for shared fitnesses above, and solving for the equilibrium

rat10 Teqn = B2t
T —To

Tegn =

1—71," )

where r, was defined in earlier work (Horn, Deb, & Goldberg, 1994) to be the ratio of
overlap: r, = —%B— Here we define r} to be the inverse of the fitness ratio r;, which was

also defined in earlier work (e.g., Horn, 1993).

From Equation 4 we see that the equilibrium point changes with overlap, just as with fitness
sharing. With no overlap, that is when r, = 0, then ren, = . And at complete overlap
(ro = r%) the equilibrium point is 0 (i.e., the population will converge to a uniform one,
consisting of all As).

“Thus, r} = ;17 = —ﬁa Note that if we assume, without loss of generality, that fg < fa (that

is, niche A is always the better of the two), then 1 < ry < 00, while 1 < r} < 1. Because of their
different ranges, we use both 7y and r} in this paper.

///////// - .
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Let us extract from the equation for 1, , the actual number and proportion of A’s in the
population, n4 and P4 = 7, which we will need later:

ng N —ny R _T}"To

Tegn = — = = -

ng4 N4 Py 1—-r,"

Solving for n4 and calling it n 4

1—-r,

1= 2r, +7, ()

71‘4160 =

This is the number of copies of A we would expect to find at equilibrium, given a particular
ratio of fitness r} and ratio of overlap r,, and a fixed population size V. Dividing both sides
by N gives Py, which we'll call Ppeg:

_ 1~r,
_1~2r0+r}'

(6)

PA,cq

‘This is the proportion of As we would expect to find at equilibrium (and is independent
of population size N ). Both n Aeq and Py ., = MN—‘l are simply predictions describing the
expected equilibrium based solely on the assumed condition that at equilibrium all (shared)
fitnesses of all individuals are equal.

2.2 EXPECTED NICHE MAINTENANCE TIMES

How many generations can we expect selection to keep both of our niches in the population?
If we assume that there is no mechanism for reintroducing individuals, our question becomes
“when do we expect to lose the last individual from a niche?” In the two niche case, this
will happen when one species/niche has completely taken over the population.

Since niching “pushes” the population toward equilibrium, we should expect that the time to
niche loss will be long. Indeed, under perfect sharing, with no niche overlap, we can calculate
the expected niche maintenance time exactly, and we find that it grows exponentially in
population size N (Horn, 1993; Mahfoud, 1995a).

For the case of niche overlap however, an exact calculation appears impossible, and some
have resorted to full Markov chain models (e.g., Horn, Goldberg, & Deb, 1994), to calculate
the expected absorption times. But it is desirable to have in hand a closed form expression
for the expected time to niche extinction. Horn and Goldberg (1996) approximated the
expected time to niche loss as

(1-2r, + r})N
(1 - "'o)N + (7'} - TO)N ’

) E [tabs} = (7)

Their approximation seems an adequate predictor, as shown in Figure 2, which tests the
closed-form approximation. Figure 2 plots both the exact results (from the Markov chain
model) and the approximations. The solid dots are the plotted points for the exact (Markov)
model, while the dashed lines are defined by Equation 7. In general, we see close agreement
over the range plotted, except for high overlap (e.g., complete overlap when r, = e = 0.5).
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EXACT vs. APPROX. Niche

Loss Times
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Figure 2: A comparison of ezact expected niche loss times to the approximated times, as a function
of population size. The exact results {from the Markov models) are shown as solid dots. The
approximations, from the closed-form expression, are shown as dashed lines. The plots indicate
general agreement for small niche overlap r,. For all plots shown r} = %

2.3 CONVERGENCE TO NICHING EQUILIBRIUM

Having found an upper bound on expected lifetimes of niches, we now turn to the question
of how such steady-states are reached. Under normal selection (e-g., in a simple GA) it has
been shown that convergence to the “equilibrium point” of a uniform population takes place
very quickly. In the case of selective preference (ie., 7y # 1) the convergence time grows
logarithmically in population size N , while under genetic drift (i.e., r} = 1), the expected
convergence time grows linearly in N (Goldberg & Deb, 1991). Can we expect similarly
quick convergence to “niching equilibrium”?

So called “niche convergence time” is also of interest because it provides a lower bound
on niche maintenance time. We can compare this lower bound with our upper bound on
niche maintenance times. When these two time bounds are close, we can expect poor niche
maintenance. When they are far apart, we should expect long-term, steady-state niche
maintenance. Under what conditions of niche overlap, fitness ratio, and population size can
we expect to find the phase transition from poor to good niche maintenance; that is, the
transition from competition to cooperation?

2.3.1 Expected Proportions Analysis

To answer such questions, we use the simple, well-known method of ezpected proportion
equations to model niche convergence. This method of tracking the expected next generation
population only, rather than tracking the entire distribution over all possible populations, has
been put to good use many times in the GA literature (e.g., Smith & Valenzuela-Rendén,
1989; Goldberg & Deb, 1991; Neri & Saitta, 1995).

Under proportionate selection, the expected proportion of the next generation’s population
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given to an individual is equal to the probability of selecting that individual for reproduction
in the current generation’s population. Thus if P4, is the proportion of the current popu-
lation, at time ¢, consisting of copies of rule A, then E[{P4+41] = pa, where p4 is calculated
at time (generation) ¢. The probability p4 of selecting an A can be written in terms of the
ratio of niche overlap r,, the inverse ratio of fitness r’f, and of course the current proportion
of As (Pa,):

i oA = 1—7‘O+T'OPA)¢. (8)

1—ro+r3,

Substituting p4 into E[P4t11] = pa and rearranging, we find that

1—r T
OI+ : t
1—r0+rf 1—r0+7'f

Al o,

E[Pgs41] = Py,

Now we make our major assumption that E[Pg4,41] ~ P4 11 and the above becomes a
simple linear recurrence relation on Pay. Defining Pagp to be the initial population, we
solve the difference equation and rearrange to get:

e e i,

_ l-r,
B 1—2ro+r}

; ¢
1—7r, T

: - . 9

(PA'O 1—2r0+7"f> (r’f—ro—i-l) ©)

Remembering that at equilibrium (steady-state) P4 ., = r_—]‘ziﬁr—,! (Equation 6), and intro-

ducing 8 = rﬁﬁ, we simplify to
e

Py

§ PA,t = PA,eq - (PA,eq - PA,O)ﬁt

: or
: PA,t :PA,eq(1 _ﬁt)"f"PA,Oﬁt' (10)

{ We note that 8 < 1. This must be so as the numerator of B, 1o = Lﬁ‘i, must always be

< 1, while the denominator must always be > 1,since fap < fg = ‘%ﬁ < J}ii = 1o <Y,
andso 1< % — 7, + 1. In general, 8 < 1 and Equation 10 illustrates the exponential decay
of the initial state’s effect on the current population, and the corresponding exponential
growth of the “long term” steady state’s influence.

2.3.2 Convergence Times

Here we derive a useful expression for two-niche convergence times by solving Equation 10
for-time ¢ (in generations). Rearranging Equation 10, we move ¢ to one side:

t - > _ .
b Pyo— Py eq

»

Taking the logarithm of both sides and solving for ¢, yields:

In PA,cg“PA,L)
t= —-———_(PA'“‘P""’ . (11)

Ing

SR ~
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RESOURCE SHARING NICHE CONVERGENCE TIMES

{gens) ¢

(gens)

In ¥
Figure 3: Expected niche convergence time grows logarithmically in population size V.

In general P4 ¢ approaches Py eq asymptotically with ¢. More practically, we introduce the
discrete nature of a finite population of size N , by asking for the time it takes to go from one
copy of A (P4 = —}7) to within at most one individual ( %) of the equilibrium population
(PA,t = PA,eq - T{F)
1

_ In(—LrPA‘zq_W)

Inp ’
Simplifying yields:

¢ _ —ln(PA,eqN — 1)
cony — h’lﬁ M
We can see immediately that expected convergence time grows logarithmically in population

size N, as we suspected. Figure 3 illustrates a typical expected growth in convergence time
with increasing N. Here 7 = } and ro = 1 (remember that 8 is a function of % and 7,).

(12)

3 A MAP OF COOPERATION VERSUS COMPETITION

In our review of previous work, we have shown that convergence to niching equilibrium
is fast, behaving much like convergence in the simple GA under selection pressure alone.
Both convergence times, for the simple GA and for sharing, grow logarithmically in .V,
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population size. This is in sharp contrast to the very long niche maintenance times, which
grow very rapidly (exponentially) in N. But with both niche maintenance and niche con-
vergence, performance degrades with increasing niche overlap, objective fitness difference,
¢ and decreasing population size. As the general niching conditions become less favorable,
: the difference between niche convergence time and expected niche loss {maintenance) time
narrows. We face a blurry area between cooperating species (i.e., long niche maintenance
times) and competing species (e.g., very short maintenance times).

In this section we use the previous results to further define the elusive but critical boundary
between competition and cooperation. We develop a preliminary version of a “control map”
to predict the bounds of niching success and failure, comparing theoretical boundaries with
empirical results, and discuss the implications and applications of such control maps.

etz P,

3.1 COMPARING NICHE MAINTENANCE TIMES TO NICHE
CONVERGENCE TIMES

In this subsection we make an initial attempt to bring the above two timing results together.
In Figure 4 we illustrate a simple way of using these two results together. The upper
curve plots the expected niche extinction times (using the approximations) as a function of
population size. The lower curve is the expected niche convergence time. Here again the
fitness ratio 'r’f = %, but now the overlap ratio is relatively high, r, = 0.45. This overlap
means that r,/r: = 90% of B’s covered examples are also covered by A. This relatively
high ratio of overlap was chosen to illustrate clearly the predicted niching failure at low
population sizes (e.g., N < 20). At high enough population sizes (eg., 30 < N), the
difference between the niche convergence and niche extinction times is quite high.

"i Characterizing the critical phase transition from poor niche maintenance to robust niche
; maintenance as population size increases, is tricky. The niche convergence model (lower
¢ ? curve) breaks down for small population sizes, while the niche extinction time approximation

(upper curve) loses accuracy with increasing overlap. Yet our initial models above give us
clear indication that sharing works well within bounds. And apparently we have some hope of
defining those boundaries. In the following subsections we attempt to find these boundaries.

3.2 EQUATING NICHE MAINTENANCE AND CONVERGENCE TIMES

In Figure 4 we saw that small population sizes N could bring together niching failure
time #4355 and niche convergence time fcony, implying niching failure and hence inter-niche
competition. On the other hand, large enough N could mean fast convergence and long
times to failure, which in turn implies successful niching and hence cooperation. Perhaps if
we equate t4ps and toony, we can find a meaningful boundary between cooperative pairs of
niches and competitive pairs.

To put it in more concrete terms, note that #.on, and g, are functions of overlap, fitness
ratio, and population size. Thus teonu(To, 75, N) and tap(ro, £, V) denote functions. The
region defined by t.ony = tgy, is a surface through the three dimensional space < ro,75, N >.
To aid visualization, we fix N and get a two-dimensional space with teony = £aps nOW defining
a line. On one side of that line, teony > taps, and niching fails, while on the other side
teony K taps and niching succeeds.

With all of the noise in the stochastic operators of a GA, expecting a crisp line is unrealistic.
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Convergence vs. Extinction Times

t 10

(gens)
8

0 10 20 30 20
N

Figure 4: Expected niche extinction times (upper curve) versus expected niche convergence times
(lower curve). Here fitness ratio rj = 2 with very high overlap r, = 0.45 (near maximum).

But we could easily define a boundary region as the space between two crisp bounds. One
bound might be defined as Csuccleony = Labs, Where Couee > 1 is some constant representing
how much longer than convergence time f.,n, We expect niche maintenance time tobs tO
be, in order to predict niching success. Thus Increasing ¢syce raises our requirement for
cooperation. Niche maintenance times #,5, for successfully cooperating species would have
to be at least ¢y times their convergence times teony,-

Similarly we might define another bound as Cfaittcony = taps (where Cfea might be < 1).
Thus for two niches to be considered truly competing, such that we can count on a quick
resolution to their conflict and a single emergent winner, their expected niche maintenance
time must be no more than Cfau times longer than their expected convergence time.

Between the two upper and lower boundary lines would be a gray area of niching scenarios,
in which we could not predict with much confidence if both niches would be maintained, or
if a single clear winner would emerge. But above the boundary region we could say with
some confidence (and perhaps a quantifiable amount) that such niche pairs are cooperative
and would be maintained, while below the boundary region we could say with confidence
that niches in such pairs are competitive, and that only one of each pair will win and be
represented in the population.

Figure 5 gives a hypothetical example. Here each possible niching situation is a coordinate
in the space < r,,75 >, since we have fixed N to some value. We would like to able to divide
the space into cooperative and competitive regions. We could then adjust GA and niching
parameters, such as the exponent of fitness scaling, or some tolerance of niche overlap (e.g.,
Ush OT ash), or population size N, etc., to get the cooperative-competitive boundary that
we want. We could then say, “yes, pair X should be considered cooperative; I'd want them
both. But pair Y should be treated as a competitive relationship; I want only the better
species of that pair.” (See Figure 5.)
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1
fabs = Cauce Lony
_ Whel’ecﬁu’l << Couce
rab.\' - Cj“?lil tcr/nv
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i
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‘ 0
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S
x @ Y® = two different niching situations

Figure 5: Speculative cooperative-competitive boundary for resource sharing given population size
N, found by setting ¢ teony = taps.

3.3 AN EXAMPLE: A CONTROL MAP FOR RESOURCE SHARING

In this subsection we develop theoretical bounds for niching under resource sharing by

solving the equation ¢teony = tabs, and then using large and small values of ¢ for success and
failure bounds respectively. Retrieving ¢, from Equation 7, and £,oy, from Equation 12:

Cleony = tabs,

o TInPaegN —1) (A =241V
Ing (-1 )N+ (7‘} — 1)V’
- ln(T—'IE:TTi‘er —-1) R AL 13
In(_“"'r',-rraﬁ) (L=ro)N o+ (r} — r )V

Before proceeding to solve the above equation (for r, as a function of r ¢ and N for example),
we pause to simplify the notation. Recall that we defined the ratio of overlapr, asr, = "AB ;
that is, the ratio of the amount of overlap, f4p, to the fitness f4 of the better niche A. éu’c
since A is the better niche, and hence fa > fB, then r, must always vary between 0 and
7%, since f4p reaches its maximum at fas = fB, as we noted earlier. Thus the upper limit
ratio r, varies with the ratio of fitness ry (= ;l,f-) For the sake of our analysis, however,

it is desirable to have the ratio of overlap vary from 0 to 1 always, no matter what Ty is.
This will allow for easier algebraic manipulation and simplified visualization. We therefore
introduce another ratio of overlap: r,, = Lf"f— Note that r,, varies from 0 to 1. Also note

that r,, = if";}‘i = fﬁ% =71orf. Thusr, = %’f‘—', and we can simply substitute 5;’;1 for r, in
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Equation 13 above:

T'f~Tov
- l]l(r/_zro"+1N ~1) _ (rf — gy + l)N (14)
ln(l—rro;;—r/) (Tf - TOU)N + (1 - Tov)N

Solving Equation 14 for a closed-form expression is difficult. Even after fixing population
size N, we would still find it difficult to solve the above for 7, as a function of s, or for ry
as a function of ro,. With one side of the equation being logarithmic and the other being
polynomial, it is not straightforward to solve such equations for closed-form expressions.
We could turn to transcendental functions or approximations for closed-form solutions. For
now, we use numerical solutions obtained via a computer software package for mathematics
(namely, Mathematica® and its “FindRoot” function). That is, given a specific population
size N and fitness ratio ry, we numerically solve for r,, (using Mathematica’s “FindRoot”
and giving it a starting point of r,, = 0.9999).

Numerically solving Equation 14 for r,,, over a series of r; values and a fixed N, we can
interpolate a bound (for a given ¢). For example, if we assume a population size N = 50,
a constant ¢ = 10, and then vary r; from 1 to 4, we can plot r,, as a function of r; (by
sampling ry at intervals of 0.1 and then interpolating), to yield the upper plot in Figure 6.
Similarly, changing ¢ to 1000, we get the lower plot in Figure 6. Notice that as ¢ increased,
the boundary decreased. Intuitively, the greater the difference ¢ we are asking for between
convergence and maintenance times, the less overlap and fitness difference we can tolerate.
Thus the area above the ¢ = 10 plot should represent failed niching, while the area below
the ¢ = 1000 line represents successful niching (surviving pairs of niches)®. The area in
between the two bounds is the “gray area” in which we cannot reliably predict success or
failure of niching.

Thus Figure 6 is the predictive success map for pairs of niches, covering the range of possible
scenarios (fitness versus overlap). Next we perform the experiments to see how well theory

corresponds to reality.

3.4 EMPIRICAL RESULTS

Rather than perform actual runs of a GA with resource sharing among two overlapped
niches, we simply use the Markov chain model from (Horn, Goldberg, & Deb, 1994). Since
this model is exact, it gives us the expected results for an arbitrarily large number of runs
of a real GA. In particular, we use the Markov chain for resource sharing to give us the
ezpected niching performance for two niches with N = 50, fitness ratios ry varying from 1
to 4, and overlap varying from none (r,, = 0) to complete (7o, = 1), below.

We define ezpected niching performance as the probability that both niches are still rep-
resented in the population at some arbitrary point in the future. The states of the finite
Markov chain for two niches correspond to the possible distributions of the size N popula-
tion between the two niches (Horn, Goldberg, & Deb, 1994). Exactly two states correspond
to uniform populations (i.e., one for all As and one for all Bs). These states are considered
absorbing; once the Markov process (i.e., the GA run) enters such a state, it can never leave

*From Wolfram Research, Inc., Champaign, IL, USA.
5The values of ¢, namely 10 and 1000, are chosen arbitrarily. This limitation is discussed later

in this paper.
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UPPER AND LOWER THEORETICAL BOUNDS
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Figure 6: Theoretical cooperative-competitive boundary for resource sharing given population size
N = 50, and by arbitrarily choosing ¢ = 10 for the niching failure boundary (the lower bound on
competition) and ¢ = 1000 for the niching success boundary (upper bound on cooperation).

it. (We are assuming no mutation, so whenever all the representatives of a niche are lost
from the population, the niche is lost forever.)

Recall that we can use the Markov chain directly to calculate the probability that the
population is in a given distribution (i.e., that the chain is in a given state) after any number
of generations. We can therefore ask, given a particular initial distribution at generation

= 0, what is the probability that the process has not been absorbed into one of the states
corresponding to a uniform population (of all one niche), after some number ¢ generations.
This probability, which is one minus the probability of being absorbed by generation t, is the
probability of niching success (that is, both niches have survived). Since the Markov model
is an exact model of a niched GA, the calculated probability is equivalent to the expected
number of GA runs, using different random number seeds, in which both niches are present
at generation t.

For our “empirical results” we fix population size N to 50 individuals, and choose ¢ = 200
generations as a somewhat arbitrary but long period for niches to survive. We choose
as an initial population distribution the expected distribution corresponding to a random
initialization”. Computing the probability of both niches surviving 200 generations requires
the multiplication of the initial population distribution vector with the Markov transition
matrix 200 times (once for each generation), and then adding the probabilities for the two
absorbing states (corresponding to all As and all Bs) and subtracting this sum from oneS.

"Since there are only two niches A and B, and hence only two possible individuals, the distri-
bution is a binomial one, over the spectrum from “all Bs” to “all As”.
80r, equivalently, adding up the probabilities for all of the transient states.
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RESOURCE SHARING SUCCESS MAP, NICHE PAIRS
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Figure 7: Analytical results superimposed on empirical results: the numbers plotted are the
expected survival rate for the niche pairs (i.e., both niches survive), after ¢ = 200 generations.
These niching success probabilities are obtained to infinite precision via the Markov chain, but are
here shown rounded to the nearest tenth.

In Figure 7 we show these probabilities, rounded to the nearest tenth®, for various degrees
of niche overlap and fitness ratios. We can call these probabilities niche performance, or
“niche survival rate”. Also shown in Figure 7 are the theory bounds from Figure 6.

4 DISCUSSION

The results in Figure 7 reveal some important issues and hide some others. These are issues
that bear analysis, including the seemingly close agreement between the model’s predictions
and the actual results, the almost linear nature of the boundaries, and the question: “what
is all of this good for?”. These and other points are discussed below, in terms of limitations,
contributions, and future work.

4.1 LIMITATION ON PREDICTIVE ABILITY

The analytical boundaries and the actual expected performance data seem to agree quite
well, but such agreement must be qualified. We have seen that the analytical bounds are
sensitive to the setting of the constant c, as they should be, but we have no theory to guide
us in choosing the appropriate ¢ values for the success and failure boundaries. Instead,
we chose ¢ values of 10 and 1000 to approximately fit the data “after the fact”. Now it
is true that the data do bear out our theoretical expectations that the general equation
Cleony = taps could be used to find the boundaries of niching success and failure. And it is

°Le., one significant digit.
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also true that our prediction that the constant for the competition bound should be much
smaller (by several orders of magnitude) than the constant for the cooperation bound (i-e.,
Cfail K Cguee). But it is clear that without some theory for setting ¢, we cannot fully use our
models to predict niching success /failure. However, we believe that future work can produce
guidance for setting ¢;yc. and Cfei based on analysis of the relative effects of noise from
nondeterministic sources (e.g., selection, crossover, sharing operators).

Future work should also more closely examine the effect of ¢ on the boundaries; that is,
how the niche failure and success boundaries change over the generations. Note that our
theoretical model does not include the number of generations ¢ as a parameter, but of
course our experimental results must. Our models therefore implicitly “predict” that the
boundaries do not change (much) over a large range of . Although Figure 7 shows only
the results for ¢ = 200, a number of other ending generations were looked at, including ¢t =
50, 100, 150, 250, and 300. All had similar niching success rates as shown in Figure 7, but
with slightly decreasing probabilities as ¢ increased (as expected). Thus we are claiming
here that the effect of ¢ on niching success/failure is not nearly as significant as the effects
of N, 74, and 1o, but more analysis and experiment is needed to support this conjecture.

4.2 A QUASI-LINEAR RELATIONSHIP

Figure 7 indicates that both analysis and experiment agree on the nearly linear relationship
of o, to 5 along the contours of constant probability of niching success. But Equation 14,
the source of our theoretical bounds, is highly non-linear. A closer analysis (below) of
Equation 14 suggests a dominant linear term. First, we repeat Equation 14:

“IEGEERN - o+ )Y
ln(fffﬁj—) (r5 = rou)N 4+ (1 = 1,)N

We note that for r¢ ~ 1, the right hand side essentially reduces to

(rf = 2rgy + 1)V (rf =27, + 1)V N l(rf —2rov+1)N
(ry —Tou)N + (rf — 7o) 2(ry —rou)N 2 T§ = Toy

Writing the full equation, and rearranging slightly, yields

Tf=Tou
e —ln(rf_er:v_HN -1) T =25y +1

ln( 1..,.1;“".;.,-f ) Tf— Tou

Calling the left hand side K, with K = /3¢ tcony, We rewrite the above as
K= T ——21‘,,,,—{—1’
Tf—Toy
and 3olve for r,,:
1-K 1
Tov = (2‘35) Tt TR
which is linear in ry if K is constant. Just how much does K vary? From the definition of

K we see that for large population sizes N we are dealing with a very small root of 2¢t.ony.
If tcony does not vary much with ¢, K can be considered more or less constant!®.

"®Note that teony is logarithmic in 7.
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In future work we might investigate the dominant terms in Equation 14 and look for an
approximation that yields a compact, closed-form expression relating r,, to 74 linearly, as
a function of ¢ and N. s

4.3 WHAT WE HAVE NOW VERSUS WHAT WE HAD BEFORE

A natural question to ask after our comparison of empirical and theoretical niching bounds

is: what were our previous theoretical bounds and how do they compare? Prior to the
current analysis, the only quantified bounds to be found in the literature are the simple ones
that come from the equilibrium equations directly. For example, we recall the equilibrium
condition for resource sharing, Equation 6:

A 1-7,

P == =
AT N T T2, 11

where n 4 is the number of copies of species A.

Certainly, we can expect difficulty maintaining both niches if the expected number of copies
of B at equilibrium is less than one: ng < 1. (Recall that we have all along assumed that
B is the lesser fit niche: fp < fa-) So we look for the boundary ng = 1. Substituting
ng=N-ng =1=ny4 =N -1 into the equation above, and also substituting r, = %“—
to put the bound in terms of our new overlap ratio, and rearranging, we get:

N—'I‘f—-l

N -2 (15)

Tov =

This bound is then our “old bound on competition”, and is shown as the upper solid line
in Figure 8. Using only our equilibrium condition, we could at least safely say that for ry,
Tou situations above this line, we can expect niching failure (and hence pure competition),
since < 1 copies of the lesser niche are expected to survive at equilibrium.

As for an upper bound on cooperation, below which we can be sure both niches will be
maintained, we really did not have a rigorous boundary. Without models of niching perfor-
mance under overlap, it was often assumed that niching would fail if any overlap existed!?.
While much empirical evidence of niching’s robustness existed (e.g., Deb, 1989; Goldberg,
Deb, & Horn, 1992), and even some theoretical work indicated graceful degradation of nich-
ing performance with increasing niche overlap {e.g., Horn, 1993), no measure of sharing’s
tolerance of overlap has been proposed. Thus we indicate the “old bound on cooperation”
in Figure 8 as the flat line just at or just above 1, = 0.

Between the two solid lines indicating the old bounds on competition and cooperation is the
large “gray area” indicating situations of fitness and overlap in which we had no theoretical
guidance for predicting niching success or failure. Figure 8 also shows our new bounds
developed in this paper, for comparison. The newer bounds seem to more tightly bound the
actual gray area of niching.

"Hence some of the criticisms of sharing as “brittle”, as well as the frequent assumptions of
“perfect discrimination” {e.g., Mahfoud, 1995a).




Toward a Control Map for Niching 305

OLD VERSUS NEW BOUNDS ON NICHING
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{ Figure 8: A comparison of our previous theoretical predictions (solid lines) of pair-wise niching
success and failure versus our new bounds (dashed lines), both superimposed on the actual results.

4.4 THE COMPLETE PICTURE: ALL POSSIBL‘E TWO-NICHE
SCENARIOS

i We can extend our visual analysis in Figure 8 to include all possible niching scenarios by
considering the inverse fitness ratio defined earlier (as T = % = 3’%‘%) Since we assume
fB < fa, then T} varies from 1 and approaches 0, as f4 increases from fB towards oo (or,

equivalently, as fg decreases from fa to 0).

rl

!
all four old and hew, competitive and cooperative bounds. We also compute new experi-
mental results (via the Markov chain model) for niching scenarios out to ¢ = 0. (Recall
that for all of these results, N = 50.)

i Substituting <- for r £ into Equations 14 and 15, we “re-plot” Figure 8 as Figure 9, including

As Figure 9 shows, the new bounds remain superior to the old bounds. One may perceive,
however, decreasing accuracy of the new models at the extreme of fitness difference between
niches. Future work should investigate this trend, but we have already noted that some of
the assumptions in our models break down for large fitness difference or extreme overlap.

4.5 LIMITATION: PREDICTION WITHOUT CONTROL

Although Figures 7 through 9 seem fairly accurate, they are not as directly useful as the
mixing control maps of (Thierens, 1995), for example. Our model is certainly predictive,
showing us the regions of cooperation, competition, and the gray area in between. But to
have more direct control over which niching situations constitute cooperation and which
competition, we need to replace the parameters r} and r,, with more easily manipulated
parameters, such as the probability of crossover pc and the selection pressure s used by
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ALL POSSIBLE FITNESS RATIOS

v

rlo(= L)

f r/

Figure 9: By varying the inverse fitness ratio 7%, we can extend our comparison in Figure 8 to
include all possible fitness ratios (1 < r; < o).

Thierens. That is, we want the user of the niched GA to be able to set parameters at
the beginning of a GA run, so as to place the boundary between cooperation and compe-
tition to ensure the survival of desirable pairs of niches while also ensuring the resolution
(convergence) of niche pairs that the user deems competitive.

Such control parameters might not be hard to find. Candidates for fitness sharing control
parameters include niche radius o4, sharing function exponent oy, power sharing exponent
Bsi (Goldberg, Deb, & Horn, 1992), and population size N. For example, as [, increases,
the importance of objective (unshared) fitness increases, and the range of “tolerable” r;
decreases. Similarly, as ey, and/or oy, increase, the range of tolerable niche difference (i.e.,
overlap) decreases. So on the x-axis, ry might be replaced by f,p, while on the y-axis 7oy
might be replaced by some function of Osh and oy, to yield a more practical control map.
This map would allow us to tune our niched GA parameters so that the niche pairs we desire
do indeed survive, while the overlapped, conflicting niche pairs we do not want are quickly
resolved in favor of the better niche.

For resource sharing, the candidates for control parameters are not as obvious (other than
increasing N to support more overlap and fitness differences). It appears promising however
that*analogs of fitness sharing’s parameters can be found. Metaphors from nature as well
as review of common successful techniques in classifier systems and immune system models
inspire such optimism. For example, it is not necessary to strictly divide up a resource
completely. In nature as well as in some recent LCS work, a resource might become “more
available” with increasing demand. Or it might be the case that an individual might not
be able to use more than one fraction of a particular resource anyway; thus additional
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users of the resource do not so drastically reduce the original user’s share. Such effects
would allow the niched GA to support increased ro,. Similarly, if we were to simulate
more destructive aspects of competition, such as the severe depletion of a resource with
increasing usage, we could increase the importance of 7y and lower the capacity of the
system for handling overlap. Identification of direct control parameters for resource sharing
might involve algorithmic details particular to specific implementations, such as antibody-
antigen binding strengths as a “niche radius” in immune system models, or the bidding
algorithms (auctions) in the LCS. This is clearly a subject for future research.

In general, control over the bounds of cooperation and competition is a worthy goal. For
example, it is desirable to reduce the “gray area” between the bounds, since this region
constitutes the set of niching situations which are unpredictable. It appears that a simple
way of reducing the gray area is to increase population size N. Larger N should raise the
two bounds plotted in Figure 7, but will likely raise the lower plot (that is, the upper bound
on cooperation) at a greater rate than the upper plot. Confirming such an effect would be
a short-term extension of the current work.

4.6 OTHER LIMITATIONS

Additional limitations of this predictive map are its restriction to resource sharing and its
assumption of a single pair of niches. As for the former limitation, the analysis in this paper
can and should be duplicated for fitness sharing, in future work. As for the latter limitation,
the map should easily extend to the case of multiple pairs of (possibly overlapping) niches in
a single population, with little change. But the extension to three or more tuples of mutually
overlapping niches (i.e., triples, quadruples, etc.) is not necessarily straightforward.

5 SUMMARY

Increasing fitness difference r 7 and increasing overlap r, slow niche convergence time while
also speeding up niche loss. We conjecture that when these two characteristic niching
times are similar, perhaps differing by an order of magnitude only, niching fails. Applying
this conjecture, and solving for the combinations of fitness and overlap that give us these
niche failure conditions, we can plot the boundary of niching failure and success. (The
boundary turns out to be fairly linear for resource sharing, and indicates that niche loss
time dominates the calculation of the cooperation-competition boundary.) This boundary
gives us a map predicting which combinations of niche fitness and niche overlap will lead
to successful niching (i.e., cooperation) and which will lead to failed niching (i.e., successful
competition). Such a navigational tool is the first step in being able to tune our niched GAs
to promote exactly the kinds of cooperation and competition we deem appropriate for the
problem at hand.
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